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ABSTRACT

Onsager's analysis of the hydrodynamics of fluid circulation in the
boundary laver on the rotor wall of a gas centrifuge is reviewed. The
description of the flow in the boundary layers on the top and bottom end
caps due to Carrier and Maslen is summarized. The method developed by Wood
and Morton of coupling the flow models dn the rotor wall and end cap
boundary layers to complete the hydrodynamic analysis of the centrifuge is
presented. Mechanical and thermal methods of driving the internal gas
circulation are described. The isotope enrichment which results from the
superposition of the elementary separation effect due to the centrifugal
field in the gas and dits internal circulation is analyzed by the Onsager-
Cohen theory. The performance function representing the optimized separative
power of a centrifuge as a function of throughput and cut 1s calculated for
several simplified intermal flow models. The use of asymmetric ideal cascades
to exploit the distinctive features, of centrifuge performance functions is

illustrated.
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A, INTRODUCTION

Uranium enrichment is an essential component of nuclear fuel cycles
based upon light water reactors. For more than thirty years, the uranium
enrichment industry has been based solely on gaseous diffusion technology.
Because of the substantial electrical power requirements of this process,
the gas centrifuge method, which requires only about 5% of the power for
comparable enrichment, has been selected for most additional capacity.

The early theoretical work on the gas centrifuge is presented in the

book by Cohen(l)a The recent books by Avery and Davies(z) Villani(B)

b

(5)

and Benedict and 31(4) provide more up-to-date discussions, and Soubbaramayer
has summarized the current status of non-U.S. theoretical work. Summaries of
early hydrodynamic analyses and separation theory are presented in refq(6) and
a semi-technical description of the device is given in ref°(7).

There are many reasons for engaging in theoretical analysis of a gas
centrifuge. First, such calculations can be used to guide experiments, which
for a fully-instrumented test machine, are quite costly. Second, they provide
an understanding of how the flow affects isotope separation and may suggest
means of altering the flow profiles to improve performance. Third, they permit
an assessment of off-optimum performance of the centrifuge. Finally, they
can be used in engineering cost optimization studies, the object of which is
to design a machine and operate it so that the cost per unit of separative
power is a minimum. This last feature of the theory is especially dimportant,
because the large number of parameters controlling the internal flow (and hence
the separation) makes experimental optimization expensive and tedious. . Because
of the large scale of the uranium enrichmenﬁ industry, even a few percent
improvement in a separative power of a device (at no expense) means yearly
saving of many millions of dollars in the cost of electricity generated by
light water reactors.

Figure 1 shows an early gas centrifuge. The current models are of the

same general type but are larger and are capable of much higher speeds.



Machines with diameters as 1arg¢ as 24 inches have been tested. Figure

2 is a schematic of the centrifuge. An electric motor resting on the

bottom of the casing turns a shaft attached to the bottom of the rotor,

into which UF6 gas 1s fed at about the mid-point of the stationary post on
the axis. In addition to the feed tube, this post also contains conduits
for removing the enriched product and the depleted waste streams from the
machine. The rotor is centered by the bearing assembly on top, where
contact between moving and stationary parts is avoided by magnetic alignment.
The space between the spinning rotor and the outér casing 1s evacuated by

a diffusion pump.

The vertical arrows inside the rotor of Fig., 2 represent the internal
gas circulation which is in large part responsible for the favorable
separative properties of the centrifuge. This countercurrent flow can be
"driven" in a variety of ways. The term "drive" connotes a means of
generating the internal circulation in the rotor; 'thermal driye" is
accomplished by controlling the rotor wall or end cap temperatures;
"mechanical drive' is achieved by causing the rotating as to interact with
stationary objects inside the rotor. The circulation patterns generated
by the various driving mechanisms can be analyzed individually and their
flow contributions added together to give the total hydrodynamic velocity.
This separability feature arises because the state of the flow is only
slightly perturbed from the primary wheel flow {ieee solid body rotation)

so that the equations of motion can be linearized.

The important driving mechanisms are

1. Wall thermal drive, which is senerated by a nonuniform tempe-

rature distribution along the length of the rotor wall. To
obtain the direction of gas circulation in the same sense as
that produced by the principal mechanical drive, the rotor

wall temperature decreases from bottom to top.

2, End cap thermal drive results from removing heat from the top

end of the rotor or adding heat through the bottom end cap.



3. Feed drive 1is the gas circulation induced by injection of the

feed stream at or near the middle of the rotor.

4, Scoop drive is the main mechanical drive. [t refers to the flow
developed by the interaction of the statienary bottom scoop
with the spinning gas.

The magnitudes of each of these contributions to the total internal
circulation can be adjusted by experimentally controllable parameters. Wall
thermal drive is directly proportional to the longitudinal temperature gra-
dient along the rotor wall. End cap thermal drive is directly proportional
to the difference in temperature between the bottom plate and the gaskadjacent
to it and to the corresponding difference at the top end cap (or more preci-
sely, at the rotating baffle in Fig. 2). Figure 3 shows the boundary tempe-

rature profiles which generate the two types of thermal drives.

In addition to a net upflow {product rate) in the enriching sec-
tion, feed introduction produces a gas flow pattern which is labelled feed
drive. The magnitude of this component of the countercurrent is proportional

to the machine throughput, or the feed rate.

Scoap drive is controlled by the radial location of the waste scoop
tip in the "atmosphere” of gas attached to the rotor wall and by the size
and shape of the scoop. The top scoop is shiclded from the main gas flow
by the rotating baffle ; without this buffle, the top scoop would generate

a countercurrent opposing the oune produced by the bottom scoop.

The flow patterns arising from each of these drives can be theore-
tically modeled independently of the others. The total circulation rate is
the sum of the contributions due to the four driving mechanisms., In parti-
cular, the axial mass velocity is the crucial aspect of the hydrodynamics

needed for separatrion theory, and can be written as

pw = (OW)W + (DW)F + (OW)S + (DW)E (1)



where w is the axial component of the fluid velocity and @ is the gas density,
which is primarily a function of radial position. The product of the axial
velocity and the density is the axial mass flow rate per unit area. The
subscripts w, E, F and § refer to wall thermal, end cap thermal, feed and

scoop drives, respectively. Fach of these components has a distinct radial
shape and axial variation, and the mapnitude of each is controllable by the
experimental parameters mentioned previously. The flow profile in the cen-
trifupe can be "fine tuned” for maximum separative performance by manipula-

tion of the variables controlling the drives.

The density of the gas at the rotor wall, P is also a controllable
parameter of the centrifuge. It can be varied by adjusting the size,
number, and positions of the holes in the rotating baffle which removes
product (Fig. 2) and by the position and size of the opening of the bottom
scoop which removes the depleted gas. These structural features, when
combined with downstream valves, fix the conductances of the exit lines.

The rate of outflow from the centrifuge is proportional to the product of

the gas pressure at the wall Pw, {or to the density pw) and the conductances
of the limes. Thus, by adjusting the conductances of the exit lines and
specifying the feed rate, the gas density at the rotor wall can be controlled.
The cut, equal to the product rate divided by the throughput, is also
adjusted in this manner.

As will be shown in section €, the aspect of the hydrodynamics which

enters separation theory is the flow function, defined by:

- L
F(r, 2) = 2T giv (r', z) r' dr' (2)
0

where r and 2 denote radial and axial positions in the rotor. z = 0 1is

the bottom (waste) end of the centrifuge and the product is removed at

z = Z , the rotor height. The flow function can also be broken down into

A



components representing the basic drives

F=F + F_. +F_, +F (3)

Each of the terms on the right hand side of Eq ( 3 ) is of the form

of Eq ( 2 ) with the appropriate mass velocity in the integrand.

(6)

primarily solutions for pw (or F) which did not change axially (i.e.,

Early hydrodynamic analyses of the gas centrifuge produced
"long-bowl" solutions). However, both the radial shape and the magnitude
of the axial velocity are strongly dependent upon z, and the

dependence on z of each of the drives is different. ¥For example, wall
thermal drive can be used to induce circulation in a centrifuge operated
at total reflux (i.e., no feed, product or waste). In this case, flow
vanishes at the top and bottom of the votor and is largest at the midplane
of the rotor. The scoop and end cap thermal drives on the other hand, are
largest at the end where generation occurs and decay towards the opposite
end.

While the hydrodynamics can be linearized, the separation calculation
cannot. It is not possible to compute increments of separative power due
to the various drives and add the increments together to obtain the total
separative power; the total flow function represented by the left hand

side of Eq. (3) must be used in the separative analysis.

B. HYDRODYNAMICS

B.l. Perturbations from the Equilibrium State

The physics of the gas centrifuge 1s contained in the equations of
mass, energy and species conservation which govern the processes occurring
in the gas within spinning rotor. Since the hydrodynamic equations may
be decoupled from the species conservation (or diffusion) equation, it is
convenient to divide the theoretical analysis into two parts. The first is
the hydrodynamic analysis in which the gas is considered as a single

component fluid. Simultaneous solution of the mass, momentum and energy



equations in conjunction with a thermodynamic equation of state provides
the velocity profiles which are needed to solve the diffusion-convection
equation. The second part is the separative analysis, which explicity
treats the gas as a two-component mixture. This step requires solution

of the diffusion-convection equation and is considered in Section C.

In the absence of thermal or mechanical perturbations of the gas in

the rotor, a state of thermodynamic equilibrium is achieved. The gas

4,5)

rotates as a rigid body and 1s characterized by the following properties

V%efﬂ r, vzeq = 0, vreq =0

2 ) (%)
T
Pegl 0y, = Peq/P, = exp {“A [,IQ a2 J} » Teq = T

where Vz, Vr and Va are the components of velocity in the axial, radial,

and azimuthal directions, and p, . and T denote the thermodynamic variableg

pressure, mass density, and temperature. The subscript "eq" indicates equi-
librium conditions, L is the angular velocity of the rotor, a is the rotor

radius, and TO is the temperature of the gas. The dimensionless quan-

tity A is defined by

ﬂg 2
AZ - M a (5)
2 RT
O

where R is the gas constant and M is the molecular weight. The quantity A

is the ratio of the peripheral speed (9 a) to the most probable molecular

speed V2 RTO/M of the gas; it is approximately equal to the Mach number

of the rotor wall and is typically in the range 5-6,

The flow field becomes much more complex when circulation currents
are generated by one or more of the driving mechanisms discussed in Section A.
In addition to the convection established in the stratified gas next to the

rotor wall, flow along the solid caps at the axial extremeties of the rotating



cylinder must be considered. TFortunately, two aspects of the nomequilibrium

flow lead to simplifications which pe’rrﬁit solution of the equations of motionm.

First, the deviatioms of the velocity components and the thermody-
namics state variables from the equilibrium solution of Eq. ( 4 ) are

small enough to be treated as perturbations. Thus

<
#

0+ u; Vg iﬂr-%v;VZ“:O*%w

(6)

kv
fl

g TP P LTI T

The nonlinear set of conservation equations (mass, momentum and energy)
can be linearized about the equilibrium solution (Eq. (4)) and the resulting
equations contain the perturbations u, v, w, 5, 5, and T to first order

only. The linearized eugtions are:

Overall mass continuity

10 é
;-é-; (peq ru) + 5; (peq w) =0, (7 a)

Radial momentum:

o ¢p . fefra } d*u) (7
—5rQY = 2p,, Qv = — = +pi— |- ()| + 51,
P Peq2et ar “\c’rL ér e 67
Angular momentum:
aft o )% v
Epquu:;l{g; {;E(N))} ;*:—;} (7 ¢)
Axial momentum:
O==~§E+umg(f@> 451‘;\ (7 &
z \r or) RS
Energy:
1o/ aTy ¢&*
"pquZFUz?\[;“ﬂ:":(r “57) ‘5;], (7 e
Fquation of state
- M - T (7 6)
p = RT )p Peq(TO 1)



The physical phenomena which are responsible for driving the internal
circulation in the rotor are contained in the terms on the left hand
sides of the radial and angular momentum equations and in the energy equa-
tion. The left hand side Qf Eq (7 b) represents the centrifugal force on
the gas. The left hand side of Eq (7 ¢) is the Coriolis force., Thé left

hand side of Eq (7 e) represents the reversible work done on the gas due to

compression or expaunsion,

Second, only regions next to solid boundaries contain gas at signi-
ficant density. The pas attached to the top and bottom end caps flows prima-
rily in the radial direction and forms boundary layers often called the
Ekman layers. The gas held close to the rotor wall by the strong centrifugal
force flows in an axial countercurrent. This circulation is also of the
boundary layer type and is sometimes termed the Stewartson layer because

it is the compressible analog of the flow first investigated by this author(8).

Actually there are several different kinds of Stewartson layers, depending

on the flow-driving mechanism(s)e In this review, the boundary layer

formed by gas flow next to the vertical cylindrical wall of the

centrifuge will be called the Stewartson layer.

The inmer boundaries of the Ekman and Stewartson layers are not

distlnct. Rather, the flow decays exponentially with distance from the
solid boundary. The characteristic thickness in the

Flman layers depends
upon a dimensionless group called the Ekman number: ’

_ M
S A ®

which is a reciprocal Reynolds number.



According to Eq. (4) the gas on the rotor wall in confined to a thin layer
by the centrifugal force, Thus, the characteristic scaling parameter for
the mass of gas in this layer is the quantity Az of Eq. (5), and the

velocity perturbations extend radially inward only a fraction of the rotor

radius.

The two types of boundary layer flows in the rotor are analyzed by
different simplifications of the linearized equations of motion. In the
Ekman layers, radial derivatives are small compared to axial derivatives,
whereas in the Stewartson layer, the reverse is true. However, the flow
in the vertical (Stewartson) and horizontal (Ekman) boundary layers must
be properly matched in order to completely describe the circulation

pattern in the rotor.

B.2. Onsager's Equation for Flow Near the Rotor Wall
(9)

Onsager demonstrated that the linearized conservation equations

can be reduced to a single sixth-order partial differential equation which
describes the countercurrent flow in the Stewartson layer. Onsager's

method is described in detail in a paper by Wood and Morton(lo)

and is
summarized in Appendix A. Onsager's method of combining Eqs. (7a) through

(7£) yields:

2
282

Radial position has been nondimensionalized by introducing the scale

height variable:
2
E = A (1 - r ) (10)

2 . .
where A" 1s given by Eq. (5) . The scale height variable is analogous to

the altitude above the earth's surface. "Sca level" is the rotor wall and

the density of the "atmosphere' of gas in the Stewartson layer decreases

exponentially in § :

-~ §
q w (1D



. 2
In arriving-at Eq. (9), the ratio £/A” was neglected compared to unity.

' For large A this is acceptable since most of the gas is very close to the

votor wall. This simplification is known as the "pancake" approximation(lo)o

Axial position has been nondimensionalized by the rotor height Z:

M -2Z

(12)
The dimensionless group B is given by:
2 - s
16 A12§¢<Z/a)z (13)
where € is the Ekman mumber defined by Eq. (8) and
5 =1+ aZpy X7 aw

2%
is a guantity which contains the gas transport properties as the Prandtl
number (fz:;%Cf/KM) and the specific heat ratio & .
The quantity X in Eq. (9) is Onsager's Master potential. It has dimensions
of gucmz/sec, and can be nondimensionalized, if desired,by pr as, The Master

potential is related to the axial mass velocity by:

2
w . 4 At ( VX )
eq 2% 2 g (15)

Using Eq. (2), the flow function is:

F=-P 2A2 BX

2 W az 8 (16a)

in the enriching section and

F+W géi éD;i

2T a’ ’égﬁ

(16b)
in the stripping section. In these equations, P and W are the product

and waste flow rates, respectively, from the centrifuge.

~10-



B.3. Radial boundary conditions

Equation (9) requires axdial boundary conditions at the top and bottom
of the centrifuge, which will be considered in Sect. B.4, and six radial
boundary conditions. Of the latter, three apply at the rotor wall and three

prescribe the gas behaviour at the inner edge of the Stewartson layer.

Rotor wall conditions

i) the condition that the rotor wall be impermeable to the gas requires
the radial velocity component u to yvanish along the wall. This requirement

and Eq. (A-14) of Appendix A provide the following condition on the Master

%}éwz U

potential:

(17)

i1) the condition of no-slip at the rotor wall requires w = 0 at

r = a, or, from Eq. (A-15), of Appendix A:

> X ‘) L,
NEL ) =0 (18)

iii) the final wall boundary condition is provided by specification

of the rotor wall temperature perturbation, T% (z) = T W (z) - TOs where

T w (z) is the applied temperature distribution on the wall (e.g., Fig.

3b). It is not possible to control the temperature of the inner wall of the
rotor directly. All that can be done in a practical sense is to provide a
controlled heat source in the vacuum of the casing just outside of the
rotating cylinder. The thermal boundary condition is then determined by

a heat transfer analysis involving the axial variation of the heat flux from
the source, the thermal resistance due to radiant heat transfer from

the heat source to the outside of the rotor wall, conduction through the
wall, and convective transfer from the inner wall to the gas in the rotor.

This condition is replaced by one approximating the temperature perturbation

~-11-



along the inner wall by a quadratic function of axial position, which, besides

considerably simplifying the theory, is probably sufficient for the practical
purposes. Thus:

T

1 2
s ] — LRl
’To constant + q ﬁ + 5 q ﬁ?

(19)

where q' and q'" are specified constants.

In the theory developed in Appendix A, the temperature perturbation T

and the azimuthal velocity perturbation v appear as the combined parameter:

C%ﬁ - i, 2y

o AT

(20)

This quantity is related to the Master potential by Eq. (4-16) of Appendix A
which, in terms of the dimensionless position variables and after one

radial integration, provides the following condition:

) sa(zfa)AE

LY
2 Je-o 6 1Q° (Ls )g:o

where LS is the fifth order operator

AT IS B SN B
Ls D % €2 3 éei (kg 3 §£, )

(21)

Evaluating (D@/Dﬁ?ggzo from Eqs (19) . and (20), and noting that the no-
slip condition requires that v = 0 at the wall, the temperature distribu—

tion along the length.of the rotor gives the boundary condition

FQQS '
-5 X E | = SEs (' +q"m) 2
T E=o0 32(2/a)A'0 g e (22)

-12-



Conditions at the Ioner boundary of the Stewartson layer

The inner boundary of the Stewartson layer, or the "top of the atmos-
phere", corresponds roughly to the demarcation between the continuum flow
regime which characterizes the dense gas attached to the rotor wall and
the regime of rarefied gas flow in the centrifuge core. The inner boundary

is defined as that radial position ( E:o ) where the mean free path of
the gas molecules is equal to a distance corresponding to a unit of scale
height. From Eq (10), a unit scale height increment corresponds to a

distance of a/ZAZ for positions close to the rotor wall, The mean free

path is

L
A - M ) M€
\2 TYG‘QPO N NERR S T

where § is the molecular diameter of UF6, qu is Avogadro's number and
€6 is the gas density at the top of the atmosphere, given by Eq. (11)
at %*’:%Q .Setting A= a /d Az, the inner boundary of the Stewartson

layer is determined by

o~ tm A S (23)

J2 A%

Taking G" = 4 A and typical values of the other quantities in this formula,

we find g is in the range 8-10. In practice, the computed velocity
o
field is not sensitive to the numerical value of EO as long as it is

larger than the value given by Eq (23).

Because of the exponential variation of density with distance
from the wall, the fraction of the gas contained in the annular ring
between the wall and the top of the atmosphere is 1 - S Eo The
location defined by Eq (23) thus contains more than 99.9 7 of the gas

in the rotor. The radial location of the top of the atmosphere depends

=13~



upon the peripherial speed which is contained in AZ in Eg. (10). TFor
high-speed centrifuges, EO = 8 corresponds to a radial location greater

than 807% of the radius of the bowl.

The Onsager method completely disregards the behavior of the small
quantity of gas in the inside of the centrifuge. This represents a signi-
ficant difference from the approach followed by European and Japanese workers
(S), who explicitly treat gas flow in the core and match the inner flow to
that in the Stewartson layer. The Onsager approach thus provides a signi-

ficant simplification in the analysis.

iv) Feed is introduced into the centrifuge through holes or slots
in the central post near the midplane (Fig. 2). The gas moves from the
feed port in free-molecule flow and begins to interact appreciably with
the circulating gas in the Stewartson layer (via molecular collisions) at
the radial position EO just calculated. Although the feed enters the
circulating flow with an axial spread on the order of a rotor diameter
above and below the axial location of the feed port on the post, we neglect
this spread and assume that the injected gas constitutes a circular line
source of L mass units per unit time (the feed rate to the centrifuge) at
specified height n F and radial location YO, which corresponds to the scale
height Eo“ The input rate L is divided into a net upflow rate P and a net
downflow rate W, according to the cut at which the centrifuge is set to

operate, These net flows are related to the axial velocity by:

(24)

Expressing the left hand side in terms of the Master potential by Egs.
(A~12) and (A-13) of Appendix A, the boundary condition representing feed

introduction is:

[ 32 P

for Oé?é@F

> AK’AZ (25)
= 2 ’
§: %D % a® W

- — for LM L]
: 7,474

4T A
\
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v) As a second boundary condition at the inner edge of the Stewartson
layer, the axial velocity is required to have no radial gradient at this

point. Using Egqs. (A-15) and (11), this requirement supplies the relation:

2.8 OX [
2 2ET e, e

vi) Similarly, the radial gradients of the temperature and the
azimuthal velocity perturbations are assumed to vanish at the top of the
atmosphere. By virtue of Eq. (20), these two restrictions are combined

into the single condition:

<9;i=>

¢ =%y "

77777 To relate this equation to the Master potential, we note that the
right hand side of Eq. (A-16) can be expressed in terms of the axial
derivative of x by use of Eq. (A~24), from which we conclude, after one

axial integration, that:

. Qféa = TS 1 .D)Q

V§ eat en o DY

(27)

Combining the preceding two equations, the final radial boundary
condition is:

X
TY? 53 gg

0

(28)

The six radial boundary conditions on Onsager's Master equation are
given by Egs. (17), (18), (22), (25), (26) and (28). Equations (22) and
(25) incorporate centrifuge flow drives due to rotor wall temperature
nonuniformity and feed injection, respectively, subject to the restrictions

discussed 1n connection with their development.

B.4. Soclution of the Master Equation

There is an appreciable literature on the solution of the hydrodynamic

~15~



equations of a gas centrifuge by the method of separation of variables,

or the eigenfunction expansion method. Early studies using this technique

(11) and Ging(lz)e Jacques(13)

were reported by Parker and Mavyo and Brouwers(14>

have extended this approach. Onsager's Master equation, Eq. (9), is also

(1O)° The solution

amenable to solutlom by the eigenfunction expansion method
x (E,n) 1s assumed to consist of a sum of terms of the separable form £ (£) h
(n), thereby decomposing Eq. (9) into a pair of ordinary differential

equations representing the radial and axial behavior of the Master potential:

2 2 2
)5 - (o5 i% = 0 (29)
d§2 dg d§
and
iill - Eh =O
2 2
4 B (30)

where ) 1is the eigenvalue, which may be zero, real, or imaginary. Each
of these cases gives rise to a particular axial function h (1) and

a distinct set of eipenfunctions f ( £ ). These are labeled as follows

The zero eigenvalue modes correspond to ) = O and lead to axial

. . . . . . . 0
solutionswhich are linear in n and to radial functions designated by £°(g ).
The corresponding product solution for the Master potential is denoted

0
by X .

The end modes result from solutions of Easf29) and (30) for real (and
positive) values of ) . The axial shapes are exponential in n and the
corresponding radial eigenfunctions are designated by fE (& ). The
Master potential obtained from the real eigenvalue solutions is denoted by

E
X e

The lateral modes arise from imaginary eigenvalues. These modes

exhibit sinusoidal or cosinusoidal axial variations. This class of

. . . . 1
solutions 1s met considered here because, according to Wood and Morton( 0)

3

they are required only if the temperature distribution along the rotor

16~



wall cannot be expressed by the quadratic form of Eq. (19), or if the feed
distribution is more complicated than the delta function which leads to

Eq. (25). Should the need arise, however, the lateral mode solutions are
(10)
available .

With this restriction, the complete solution for the Master potential

is expressed by:

X =% + X" (31)

‘ . 0 R
In this section, the general solutions for x and are

summarized and the boundary conditions developed in the previous section
are used to determine the constants of intepration appearing in the general

gsolutions.

Zero Eigenvalue Modes

These solutions were first obtained by Parker <15)a There are

. . . 0
only three product solutions which contribute to X

0 0 0
X = €M o+ (BC, G ET (§) + (ByrC, M Of, (B ) (32)
where
flo (§) = "26“5 4—(§~ + € )e_zg (33a)
£0 (6y-Lg v F o L 28 (33b)
2 (6 "zg € A

Substituting ¥ 0 of Eq. (32) into Eq. (28) and noting that flo (EO): 0 and
fg (Sb) = 50/2 (because exp (- go) is very small), there results;

[ |
0 7 G, (34)

] 7=



The arbitrary definition of the inner boundary of the Stewartson layer

by Eq (28) directly affects only the constant C.. However, because the

o
hydrodynamic quantities needed in the separative analysis [i.e., the

axial speed or the flow functions in Eqs. (15) and (16)] involve only

derivatives of the Master potential with respect to ¢ , this uncertainly

is of no practical consequence.

The second term on the right hand side of Eq (32) accounts for
the rotor wall temperature distribution of Eq (19) via the boundary

0
condition of Eq £22). Operating on f] (£) of Eq. (33a) by Eq. (21)

0

gives (LSf )O = 4, Similar treatment of fzo (& ) of Eq (33b) yields
0

1
(LSfZ )O = 0. Therefore, Eq (22) becomes

Fw*wfl as
4L (B.4C.® ) = —. (q' + q'n )
49 32 (z/a)a'0 g R

since this equation is valid for allf? , we have

fiw;ézzﬁiiﬁiLm

128(z/)a'0 €

B =

] (35)

and

. P, S a’ q" (36)

C
128(z/a)n 0 £

]

Constant wall temperature gradient is a commonly treated case.

In this gituation q'" = 0 and

dT
' ! hd (37)

0 d‘?

so that B1 is proportional to the wall temperature gradient.
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The last term on the right hand side of Eq. (32) accounts for the
delta function type of internal feed to the centrifuge via the boundary
condition of Eq. (25). Substituting Eq. (32) into the left hand side of
Eq. (25) and noting from Eqs. (33a) and (33b) that (dflo/d E)go = ( and
(dsz/d E)go = 1/2 (again using the approximation exp (- EO): 0), we have:

% .

The coefficients BZ and C2 can be obtained by combining Eq. {(25) and

(38):
12 P
e for 0£ M <&
2T A° : ¢
BZ = az W (39)
- : for ;é 5 'i
and
This method was used by Parker(ls),
Parker(ls) and Wood and Morton(lo) treat an additional zero eigenvalue

golution, (B3+C3 ny (& e“€+<% e=2§), which is to be added to the right hand
side of Egq. (32). However, this solution satisfies the boundary condition
of Eq. (26) only if B3 = C3 = (, and 50 need not be dincluded in the analysis.
The other solutions included in XO of Eq. (32) automatically satisfy Eq. (26).

Thus, Eq. (32) is a solution of Onsager's Master equation which
satisfies all of its radial boundary conditions with the constants given

by Eqs. (34), (35), (36), (39) and (40). However, as shall be shown shortly,

"it is not the complete solution, even when no end drives are active,

End Modes

An additional solution of Onsager's Master equation is needed

~19-



in order to properly match the zero eigenvalue solution (if feed and/or
wall thermal drive are active) to the Ekman layers at the top and bottom
of the rotor. This additional solution, the end mode solution, also pro-
vides a means of incorporating scoop drive and end cap thermal drive into

(9

the analysis. The end mode solution was first deduced by Onsager The

eigenfuctions and eigenvalues associated with this solution were compu-

(16)

ted by Morton and the method of joining the end modes to the Ekman £low

is discussed in detail by Wood and Morton (10)» In this section, we summa~

rize the end mode solution. The method of coupling this solution to those

for the Ekman layers is treated in a subsequent section.

The end modes represent solutions to the ciren®unction expansion of
Onsager's Master equation wherein the eigenvalues A are real and positive.

The general solution of Eq. (30) for the axial dependence of the end modes is:

B =D exp (- §~“’?>+Eexp[“%¥—<1“"?>} @)

which indicates exponential decay with distance from each end cap.

The radial shape of the end modes is determined by the eigenfunctions
fi (£) and the eigenvalues kn obtained from the solution of Eq.(29) and the
appropriate boundary conditions. The solution method due to Morton(loalé)
is given in Appendix B. The first four end-mode eigenfunctions are shown
in Fig. 4 along with their corresponding eigenvalues. These radial shape
functions are the end-driven analogs of the zero eigenvalue modes whose
radial dependence is given by the functions fg and fg of Eq. (33). It
should be noted that the flow functions of interest in separation theory
are proportional to the radial derivative of the Master potential [Eqs. (15)

and (16)] and do not have the radial shape of the latter.

Combining the end mode eigenfunctions with the axial shape for the
associated eigenvalue from Eq. (41) permits reconstruction of the Master

potential component arising from the end modes:

0o

E E A ‘

n=1
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Determination of the coefficientsD andEn requires matching the flow
profile in the Stewartson layer to that in the Ekman layers, which

is the subject of the following section.-

B.5. Coupling"of the Stewartson and Fkman layer solutions

The flow in the Ekman layers on the top and bottom end caps is
important to the hydrodynamics analysis because it provides the mechanism
by which the imposed end cap conditions are communicated to the main flow
in the rotor. In effect, the Ekman layer analysis is a means of providing
axial boundary conditions for the Omsager Master equation, and serves to

determine the coefficients Dn and En in Bq. (42).

The analysis of the flow on the end caps given by Carrier and Maslen(17),
which is summarized in Appendix C, leads to a relation involving the quantity

¢ of Eq. (20) and the étream function:
a

1 j{ o
¥ = —— P wr dr'
43
o Ra’ €q (43)
Peq v
Carrier and Maslen showed that the flow parameters ¢ and ¥ in the Stewartson
layer at the bottom of the rotor (subscript ) are related to those on the

bottom end cap (subscript B) by:

4 83/4 eUngﬂ
d‘:es - %B% - Ve (¥ % (44)

where € and S are given by Egs. (8) and (14), respectively.

A similar equation can be derived for the Fkman/Stewartson matching

condition at the top end cap:

36 -§/2
- __4s e
F,m B - (¥ - ) (45)

‘G

where WT and @T are the specified, radially-dependent stream function

and aximuthal velocity-temperature perturbation parameter on the top end

I



cap (actually at the votating baffle in Fig. 2). Wm and ¢_ are the corresponding
quantities in the upper end of the Stewartson layer where it meets the top

Ekman layer.

In order to match the Fkman and Stewartson layers at the ends of the
centrifuge, the stream function Wm needs to be expressed in terms of the Master
potential and WB and WT must be related to the method of gas extraction from
the rotor. The features of this procedure at the bottom end cap are depicted
in Fig. 5. For computational purposes, waste removal 1s simulated by flow
of gas through an annular slot in the bottom end cap, even though actual
waste extraction occurs through the scoop. If the slot is of width Af in

scale heights at radial location Ew and gas exits with speed w the waste

BS
flow rate from the centrifuge W is given by:

W= 0, eﬁgw T a2 A WB/A2

The stream function WB is obtained from Eq. (43) with radial position

expressed in scale height units, Oeq given by Eq. (11), and w = - wg

: §
Yy =- "£§-- e"gwgdg‘
2 A fQLa (46)
0
The integral in Eq. (46) is zero up to Ew - AE /2, increases linearly up

to gw + AE /2, and is constant thereafter.

To determine VY _ in Eq. (44), the right hand sides of Eqs. (A-11) and
(C-8) are equated and the Master potential introduced by use of Eq. (A-13).

For ¥ = a, this procedure yields:
_ 245 {3X>

oo 5 -0

Oo L’ %Y=

The quantity @B in Eq. (44) denotes the specified thermal and

(47)

mechanical conditions on the bottom end cap (l.e. an end cap temperature
A TB larger than the bulk has, as shown in Tig. 3a, and/or a bottom disk
with angular velocity Q - AQB):

T
&b - BTy aly (48)
o LL

o]
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The first term on the left hand side of Eq. (44) represents the same parameter
evaluated in the Stewartson layer at the bottom of the centrifuge. Tntegrating

Eq. (27) along the bottom of the Stewartson layer gives:

(49)

§
P = P(g,0)= blo,0) ~ 22 pL !
o= T(8.0) eAte na’ <“§§;"> o
W 0 7@0

where ¢ (0, 0) is evaluated at the rotor wall at a distance equal to the
Ekman layer thickness from the bottom end cap. If the temperature is

discontinuous at the rotor corner (as in Fig. 3 a), then:

?(0,0):0 e

For the temperature profile of Fig. 3 b,on the other hand,

(50a)

0, 0) = T./T
P 0, 0) = ATy/T (50b)
Eq (50a) corresponds to bottom end cap thermal drive, whereas
Eq. {50b) represents pure wall thermal drive. In elther case, the azimuthal
velocity perturbation v is zero because ¢ is evaluated at the rotor wall, not
on the bottom end cap, which may be rotating at an angular velocity different

from that of the wall. Substituting Eqs. (46), (47), and (49) into Eq. (44)
yields:

| §
295 K A
?(O.DDM %'35 - € &Q»?w 0 a’® fo (BTZ )"?:O ¢
(51)
B J6/2) 2.4° <TK> N | g-f' ,
Ve o5 \gm0 ot . )

In order to comvert Eq. (51) (and the corresponding top end cap
matching condition) to usable axial boundary conditions for the Master
equation, X is expressed as XE + XO. With XE given by Eq. (42), this

substitution converts Eq. (51) into:
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oo

+ E Qn ( % ) En = RB (

n=1

(52)

€)

\ §
D

EB | flag (53
, |

€/2 n 2 85
e R SR
d§ EAP L a
W
, g53/%,2 €/2 af® J A
() = — e /o9 2 S AI} By xpl =
9| en - i e [l
A dg gAﬁqﬂ. a D -
» (53b)
0 5,

3/4 2 Pl -
RB(g)—;méS ‘ e§/2 2 A : ( }_’_» 21 @fwB dgl
\EE ?W N a B% 7502 A“ Sl a

£ »x° ' ., ’
S S S j(._?m_ Y48+ 0,00 - P, (54)
gapLa’ J, PN =0
W .

are known functlons of the scale height variable £:; the

derivatives and

integrals of the end mode eigenfunctions fi are obtained by the same methods

that produced the curves of Fig. 4.

The corresponding operations on the

zero eigenvalue mode XO are performed with the aild of Egs. (32) and (33),

in which the constants are known.

The formula corresponding to Eq. (52) for the top end cap is:

oo o
R N o

(55)

(&)

where RT(E) differs from RB(E) of Eq. {54) by the appearance of a plus

sign in front of the first term on the right hand side and by the use of

the specified exit velocity through the top end cap, Wi

in place of ~Wge

In addition, ¢B is replaced by @T, reflecting thermal conditions at the

top end cap, and ¢(0,0) in Eq. (54) becomes ¢(0,1), which is equal either

to zero or to ATT/T09 the latter applying if the top end cap is cooled.

Note that the end modes are active even when there are no end drives (i.e.,

$(0,0) = ¢B); the end mode solutions enter even in the cases of wall thermal

or feed drives.
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If the summations in Eqs. (52) and (55) are terminated after N terms, 2N
coefficients Dn and En need to be determined. This is accomplished by
selecting N radial positions between § = 0 and & = go and applying Egs.
(52) and (55) to each position. The resulting 2 N algebraic equations

are then solved for the N values of Dn and the N values of En' Calculation
of these coefficients completes the determination of all of the constants
in the solution for the Master potential for the specified thermal,
mechanical, and feed conditions of the centrifuge. Any of the physical
characteristics of the flow can now be computed from the Master potential;
in particular, the axial mass velocity needed for the separation analysis

is given by Eq. (15).

B.6 Computed velocity profiles

As indicated by Eq. (1), the circulation developed by each of the
driving modes can be computed indiyidually and the resulting components
of the axial velocity added together to produce the total countercurrent.
In this section, we give illustrative examples of the calculated flow
patterns for wall thermal drive and for scoop drive, which are the most

important techniques for flow generation from a practical point of view.

Wall Thermal drive

The computed profiles of the axial mass velocity at two axial loca-
tions in the rotor are shown in Fig. 6 [ after Wood and Morton <1O)]n
These circulatory flows are produced by an extremely small temperature gra-
dient ; the temperature of the rotor wall is 1 K hotter at the bottom
than at the top, for a rotor which is over 3 m long. This driving force produ-
ces maximum speeds of the gas descending near the wall of As 4 cm/s.
Because there is no feed in this example, the areas under the curves in

the figure are zero. However, the strength of the countercurrent flow can

be obtained by integrating the mass velocity from the axis (g == )

to the crossover point (& = § o which is where w changes sign)
2 po
strength of : wa - ? wdg (56)
countercurrent 9 eq
A £co
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At the midplane (n= 1/2) the flow in the countercurrent ig 30 - 40 mg
UF6/s. This value is of the same order of magnitude as the product or waste
flow rates in a typical centrifuge . If the temperature difference between
the top and bottom end caps were 10 K instead of 1 K, the maximum velocity
and the strength of the countercurrent would be 10 times larger than the
values obtained from Fig. 6. Thus, it is relatively easy to obtain reflux
ratios (strength of couﬁtercurrent/ net upflow or downflow) in excess of
ten, which renders any feed effect a small perturbation on the countercur-

rent established by the primary drive.

Figure 6 contains curves for two rotor speeds, 400 m/s and 700 m/s.
The shapes of the velocity profiles in terms of the real radial position
r are not much different for these two cases despite the separation seen
in Fig. 6, which is due to use of the scale height unit. At 700 m/s, the
countercurrent extends ocut to ~s 6 scale heights, whereas at 400 m/s , it
dies out by ~s 2 scale heights from the wall. However, using Eq. (10) to
convert scale heights to fractional radius, both of these figures corres-
pond to a Stewartson layer contained within the outermost 10% of the rotor
radius. Or, the Stewartson layer is ~ 9 mm thick in the two cases. The
velocity crossover points occur at a fractional radius of ~ 0.98 for both
rotor speeds. Note that the crossover point moves outward (in scale height
units) as the rotor speed increases. In the limit of high speeds the radial
shape of the prifile appears to be approaching that deduced previously by

6, 15, 18)

several authors by elementary analyses of the hydrodynamics
=§ “2§
= r (57)
?eq w of e (1 + 2 % Je f,< £ )

This solution also corresponds to the axial velocity obtained from
the f? ( £ ) zero eigenvalue solution given by Eq (33a) (i.e.,

the second derivative of f? has the same £ =-dependence as Eq (57),),

Although this particular aspect of the zero eigenvalue solution
has nearly the correct radial shape, its axial behavior given in Eq (55)
is very different from the correct one seen in Fig. 6. Thus, the end

mode solution is essential to a correct analysis of the c¢irculation eyen when

Y.



the countercurrent is not driven from the ends. For each of the two
rotor speeds considered, Fig. 6 displays the profiles at two axial
positions in the rotor. The profiles have roughly the same radial shape
at all axial locations. The amplitudes are greatest at the midplane and
decrease to zero towards either end in a symmetric manner. The counter-—
current induced by a constant temperature gradient along the rotor

wall can be expressed empirically by the formula

(@ Wy =B, (§) (M) (58)

where va is an amplitude factor which is proportional to the imposed
wall temperature gradient, fw( £ ) is a radial shape function appro-
ximated by Eq (57) " and h ( n ) gives the axial variation of the

i A\

strength of the countercurrent

. c » »
hw(WZ):[am’((l—"? ﬂ ¢59)

where . C = 2/3
Scoop drive

Scoop-driven internal flow calculation is more difficult than
that for the wall-driven flow just discussed. In the theoretical formu-
lation outlined here, as in other recent studieé(5> , the scoop is
simulated by a bottom end cap rvotating morc slowly than the rotor wall.
In reality, the scoop is a stationary object placed inside the high
speed rotating gas, and a realistic simulation of its flow~driving
capacity would probably treat it as an internal source of heat (due to
friction) and a sink of momentum (due to drag) located in the gas near
but not at the bottom of the rotor. The theory described here does not
contain provision for internal sources or sinks of mass, momentum or
energy, but the detailed development of the Onsager model by Wood and

(10)

Morton - allows for such terms,which lead to a nonhomogeneous
version of Eq. (9). Scoop simulation by a velocity defect of the

bottom end cap leaves unanswered the question of how to relate the
angular speed defect A Q g to the size, shape, and radial placement

of the scoop tip. As can be seen from Eq. (48), scoop drive simulation
by an angular velocity deficit would produce exactly the same type of
velocity profile in the rotor as would a heated bottom end cap, which

does not seem intuitively reasonable given the physical difference between
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the two means of inducing a countercurrent.

Nonetheless, to obtain some idea of the type of internal circulation
to be expected from a bottom scoop, Fig. 7 reproduces the numerically
computed profiles from the French code CENTAURE Kl9) for the same centri-
fuge to which the curves in Tig. 6 apply. For the scoop drive case, the
angular velocity defect A QB/ 0 was chosen to produce the same circulation
strength (as defined by Eq (56)) at n = 0.05 as is achieved by wall
thermal drive at the rotor midplane. As depicted in Fig. 7, the radial
variation of the axial mass velocity has roughly the same shape for scoop
drive at N = 0.05 as does wall thermal drive at n = 0.5, However, instead
of a symmetric amplitude decay towards both ends, scoop drive decreases
monatonically from the bottom to the top. This is a result of the expo-
nential decay of the end modes contained in Eq (42). Within a short distance
from the scoop, the higher modes essentially vanish and only the pure
exponential decay characteristics of the first end mode remains. Moreover,
the radial shape of the flow induced by the scoop is not self-preserving,
as it is for wall thermal drive. The crossover point moves towards the
axis as height in the rotor increases. Despite these complications, the

scoop-driven countercurrent will be approximated by a simple single-term
product solution for use in the separation analysis of the following

section:

]

(€W = Bgf, (§)On (%) (60)

where Bé is a8 single adjustable amplitude factor for this driving mechanism.
To very roughly model the some what broader radial distribution of the
scoop-driven countercurrent than that due to wall thermal drive, fs (£)
is taken to be of the same form as Eq (57) but an adjustable parameter

b { £ 1) is added

fs( § ) = e“bg - (142 bg )eﬁzbg (61)
Axial decay is approximated by
h () =exp (-7 9 (62)

where n 1is an axial decay length.
s
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Feed drive

To represent the internal flow arising from feed injection at
axial location 7 g Ve utilize the last term in Eq (32), with the constants
B, and ¢, ‘determined by the feed conditions. If the latter are
expressed by Eqs (39) and (40), and Eq (15) is used to convert the
second derivative of the Master potential to the axial mass velocity,

we find

2
24 5, 85, _.%, (63a)
T o

in the enriching section of the centrifuge, and

( ?eq W)F N

. 2 -
2 A ”§(1=e§> (63h)

( ? eq W)F - “lﬁ,az Woe

in the stripping section.

Just as in the case of wall thermal drive, these solutions
are only rough approximations because the end mode contributions intro-
duced by application of the axial boundary conditions of Eq (52) and
(55) , wherein the zero ei:genvalue solutions enter via the factor R

B

of Eq (54) and the corresponding factor R for the top, have not been

T
taken into account. In addition, the effects of feed spread (i.e. the

distribution of the input gas over a significant axial interval), the angle
of feed injection, and the angular momentum deficit of the feed gas are lost
by this simple treatment. However, because feed affects the total counter—
current by énly about 10% in a practical machine, the approximations given
by Egs. (63a) and (63b) should be adequate for the separation calculations

of the following section.

C. SEPARATION THEORY

C.1. The diffusion-convection equation and its boundary conditions

The object of separation analysis of the gas centrifuge is to
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determine the product and waste concentrations for specified feed concen-
tration, throughput, cut and internal gas velocities. The equation to be

solved is :

2
ox _ pD 93 | o 9x . AM 2 9%
=T aT |t T RT_ (xfitv) "x (1-x) | +0D 822" - (64)

Ix
pu=é§=+pw 3z

where the perturbation velocity components, u, v, w are obtained from
the hydrodynamic analysis outlined in section B and x the isotopic fraction
of the U-235. The density-self diffusion coefficient product, ND, is a

4

constant equal to 2.3x10 " ¢ UF6/cm~sec at 300 K., Two terms in Eq. (64)

may be eliminated at the outset.

The first term on the left hand side represents radial convection
of U~-235. It appears when the axial mass velocity varies with height in the
rotor because when this is so, overall mass conservation, Tg.(7a), requires
that Pu be nonzero. However, because of the large length-to-radius ratio
of the rotor, even sizeable axial variation of pw does not generate radial
mass velocities sufficiently large to render radial convection important.

Consequently, this term in Eq. (64). is deleted.

The appearance of the azimuthal perturbation velocity v on the right
hand side of Eq. (64) arises from the fact that the pressure diffusion
phenomenon depends upon the local tangential velocity, not on the wheel flow
velocity. However, v is everywhere much smaller than v , and can also be

neglected.

With the above omissions and with the approximation 0w =0  w,

eq
Eq. (64) becomes

2
% _ (D) 5 [ ax . am0® 2 5%
Peq” 3z r v [} 3¢ © rr ¥ *{mx) |+ (eD) =5 (65)
o) dz
The outer radial boundary conditions for Lq. (65) is:
9% . AMDS | (66)
FE "0
o r= a
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Equation (66) prohibits transport of matter through the rotor wall.

For the purpose of solving the diffusion-convection equation, the imaginary
inner boundary at r = r_ [or £, of Eq. (23)] may be regarded as a solid
wall rotating at the wheel flow velocity. Except in the zone of feed
injection, the strong centrifugal force prevents significant radial mass

transport at the inner edge of the Stewartson layer, or:

2
9 AME
[Tf? * “RT rx(1~x>] = 0 (67)

=T
o}

However, if the axial zone over which feed injection occurs is small compared
to the rotor length, feed injection can be considered to occur at a unique
axial location Zpe In this case, the feed effects appear in the axial
boundary conditions,

The axial boundary conditions for Eq. (65) are:

and 9%
(Ey—) = 0 (69)
Z
z = 7

When applied to the solid part of an end cap this condition represents
zero mass flux of U-235. However Egs. (68) and (69) are also used at the
radial locations of the ports for gas extraction on the end caps. In this
case, they imply that the exit flux is primarily due to convection with a
negligible portion due to molecular diffusdion.

After solution of the diffusion-convection equation, the product and

waste compositions are calculated from:

r + Ap
2m P |
T e 9 Z s Z Ydl‘ 7 &
L Pag¥ (T )x(r ) (70a)
r - 0y
D
and
r + A
W W
27 .
Xw == ‘ﬁ’*"“ peq‘V(rs()) X (19 0) rdr (70b)
’ J
T -A
W W
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The product removal port is modeled as an annulus of radius rp and
width 2 Ap’ and the waste removal ﬁort is trecated in a similar fashion. The
negative sign is attached to the right handside of Eq (70b) because the
axial velocity component w leaving the bottom end cap is negative in the rotor
coordinate system. The unknown exit compositions Xp and x  are related by the
overall U-235 balance on the centrifuge

XFL = Xp P o+ % W (71)

(20) (21) (5)

Nakayama and Torii , Kai and Soubbaramayer have solved the
diffusion equation numerically using boundary conditions equivalent to those

outlined above.

C.2. The Onsager-Cohen solution:

In his book, Cohen presents a solution of the diffusion-convection
equation in a countercurrent gas centrifuge (l)c The technique employed by
Cohen is closely related to the method developed by Furry, Jones and Onsager

<22)f0r analyzing isotbpe separation in the thermal diffusion column, so the
modification for the gas centrifuge is aptly termed the Onsager-Cohen

solution method. This method consists of replacing direct solution of Eq (65)

by the simpler problem of solving its radially integrated form, which is (6)
pr a ; a
= -27{pD) r(gg)dr + 27 0 wxrdr (72)
z eq -
~-X W
w 0 0

On the left hand side, of this equation, XDP applies to the enriching section
{above the feed injection point) and —xww is used in the stripping section.

The approximations in the Onsager-Cohen solution method include
1. Replacing radial integrals over the concentrations by a common
"average" value.

2. Dropping the axial diffusion term in Eq. (65).
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In solving the diffusion-convection equation using the Onsager-Cochen
method careful attention must be paid to the approximations inherent in the
analysis. In Appendix D it is shown that four different radial averages
are implicit in the Onsager-Cohen solution method. All but one are
essentially equal to that obtained by using a weighting function given
by the density distribution of Eq. (11) in the radial average. If all
of these radial averages are assumed to be identical, the axial enrichment

equation for the radially-averaged concentration x is given by:

dx _
an - 9P<n) [X(1~X) - YP(H)P(XP“X)] (73)

h s
nhere £§M) (=0 j [%(é n) - Pe g] ag
gpn) = — 2

e L jj [r,n)- pe” [F(f; n) - p(i- e:/A%j

O’ 1 - &/a° (74)

and

P =2 map D (75)

1s a diffusive transport parameter with the units of flow rate
Yp is

Ypm = ¢ (=0 J [F(a,m - Pe—ﬂdg (76)
O .

F(E 5N ) is the flow function defined by Eq (2).

dx (77)
an - gw<n) x(l-x) - Yw(n)W(x~xw{}
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The coefficients g, and Y, are of the same form as Eqgs (74) and (76)

except that P is replaced by -W.

The differences between the axial enrichment equation of the early
Onsager~Cohen method (Eqs. (52) and (59) of Ref. 6) and those derived

here are

1. Axial variation of the flow-dependent coefficients is included.
2, The coefficients g and vy are different in the enricher and stripper

sections for the following reasons

a) The inclusion of the axial diffusion term in the derivation of
Eq (74) * supplies the term P(! mg;/Az) in the denominator and

9
a term -W(1 = £ /A7) in the comparable stripper coefficient.

b) Proper treatment of the wall concentration in the derivation
. -7

of Eq (73) introduces the Pe ~° terms in g  and Y, and
- £ . P
- We terms in g and vy .

gw n Y w

¢) The product and waste flow rates affect the flow function F

through the FF component in Eq (3). Fa is proportional to P in

the enricher and to -W in the stripper.

Solution method

Equations (73) and (77) cannot be solved analytically if the coeffi-
. . *# . .
cients g and y are axially dependent, However, the following numerical

scheme converges rapidly

¥ Actually, formal analytical solution is possible when ¥ << 1 but the

. . . . . (5
double integrals appearing in the solution must be evaluated numerically )
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The feed concentration Xps the cut 8 = pP/I, and the throughput L = p + W

are specified, as are the rotor geometry (a and 2Z) and the speed (0 or Az)o

The hydrodynamic analysis of section B provides the axial mass velocities

for each flow mode. This may require specification of the Ekman number (€).The
mass velocities are converted into flow functions and added together
according to Eq (3). The flow coefficients gp, 8,0 Y 5 and Y, are
calculated according to Eqs (74) and (76) and the corresponding stripper

formulas.

A value of XD is guessed. The best first guess is obtained by using the
axially averéged values of g and Y in the analytic solution of the separa-

tion problem given in Ref. 6.

The value of Xw corresponding to the assumed XD 1s determined from the

overall material balance of Eq- (71).

Eq (77) 1is integrated numerically from 7N = 0 until the specified feed

injection position, 0N is reached. Alternatively if the condition of no-

F’
mixing is imposed instead of specification of the feed point, the integra-
tion of the stripper equation is carried up to the axial position at which

X o= AN
F

In the enriching section integration is continued using Fq (73) until the

top of the centrifuge (N = 1) is attained.

The composition calculated in step 6 is compared to the guess in step 3.
If these two do not agree satisfactorily, the initial guess is improved

(by Newton's rule, for example) and the calculation ropeated.

If the guessed and calculated product compositions are in satisfactory agree-

ment the separative power can be computed by

§U = 21.2 L {ev<xp> =0V ) - V(x| (78)
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where V(x) is the value function defined by

V(x) =(2x-1)%[x/( - x)] (79)

The numerical factor in Eq (78) provides 6 U in kg U/ year from

throughput I with units of mg UF6/secn

C.3. The performance function

The separative power of a centrifuge of given geometry (rotor height
and radius) and specified peripheral speed (the highest that the materials
of construction can withstand) depends upon the internal variables control-
ling the component drives and upon the operating variables, which are the
cut O and the throughput L. These last two parameters appear explicitly
in the separation theory and indirectly via the feed drive component of the
flow function. In general terms the separative power of a centrifuge may

be expressed in the functional form

U (L, 6 , internal variables)

i

where the term "internal variables'" includes all of the adjustable parameters

controlling the various drives. The centrifuge performs most efficiently
when the internal variables are adjusted (at each combination of L and § ) so
that the separative power is a maximum. The optimized separative power is
therefore a function only of the operating variables I, and 8 . Using an
asterisk to denote optimization with respect to all internal variables,

*
the function &U (L, ® ) is called the performance function of the cen-

trifuge. Provided all the internal variables have been considered in the opti-

mization process, the isotope separating capability of the centrifuge is

completely defined by its performance function. Assuming that the rotor
geometry and the speed are fixed, each point on the performance function

(i.e., at each L and 0) requires optimization of U with respect to the

following internal wvariables:
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1. the wall temperature gradient (or more generally the temperature

distribution along the rotor wall).

2, the temperature difference between the end caps and the bulk gas

at the ends of the rotor.

3,4. Two variables controlling scoop drive (e.g. radial location of the
scoop tip and the size of the tip, or, for analytical flow modeling,
the angular velocity difference between a hypothetical bottom disk

and the rotor wall and the radius of the bottom disk).
5. The gas density at the rotor wall.
6. The axial feed injection location

This list of six controllable variables probably represents the mini-
mum number which have to be considered in flow optimization. Because of the
large number of variables involved, determination of the performance func-
tion either analytically or experimentally is a costly procedure. One way
of greatly speeding up the hydrodynamic calculation is to exploit the
superposition property of the flow drives [Eq (Bﬂ, Each of the component
flow functions depends upon only one or two of the six wvariables control-
ling the total flow field. In addition, each of the component flow functions
is proportional to the externally applied driving force for the particular

mode, so that Eq (3) can be further decomposed into
= + H ¥ ol
F=qF o FL quFS . (.,5)11’ (80)
where ! is the dimensionless temperature gradient along the rotor wall
[hq(37)} and ¢B is the parameter which is responsible for the countercurrent
induced by the bottom end cap temperature difference and by the scoop

[(Eq (48)] . P is the corresponding parameter which accounts for active

cooling (if any) of the top end cap.
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]
The modified flow functions Fw

and Fé depend upon the dimensionless
position variables £ and 1 and are parametric in the gas density at the
wall (or the Ekman number). A library of these flow functionms can be prepared
from the detailed hydrodvnamic codes for several values of o) in the
range of practical importance and the flow functions for arbinary 'D

reconstructed by interpolation from the library cases.

The modified scoop flow function F; is parametric in the gas density
at the wall and in the second variable controlling scoop drive, and a two
dimensional array of F; profiles would be needed for the library. There
remains the problem of how to relate the physical features of the scoop
(size, shape and location) to the angular velocity defect & Q B utilized in
the theory, or, for that matter, whether the concept of an angular velocity

defect is a suitable means of modeling the complex scoop=-gas interaction.

This problem has not been broached in the open literature.

The feed drive component in Eq (80) has been assumed to be proportional
to the net upflow in each section of the rotor (P in the enricher and
-W in the stripper). The modified feed drive flow function F% depends

upon gas density at the wall and on feed injection location.

"In order to develop the concept of the performance function without
the difficulty associated with detailed hydrodynamic calculations, we
utilize the simplified flow functions presented in Section B.6 and consider -
a centrifuge with internal gas circulation produced by a combination of feed,
scoop and wall thermal drives. In this illustrative optiﬁization calculation,
b in Eq (61) 1is assumed to be 1/2 for scoop drive and unity for wall thermal
drive. In addition, ¢ in Eq (59) 1is assigned the value of 2/3 and ng in

Eq (62) 1is taken as 0.5. The flow function is

ot 2/3
F(E,N ) = B, [e-g - {1+ Ee am(l -n)
- - : - -2E
+ B, {eag/z - (1 + &/2)e E] e™2N +(_§) [}e 5 e ]

(81)
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£q. (81)  satisfies the integral constraints

F(0,n) = P in_the enricher
i =W in the Stfipper

The coefficients Bwk and Bs include the parameters ' and ¢B appropriate

to these two driving modes. These coefficients are reparded as adjustable para-

meters which are to be determined by the optimization procedure.

Typical values of the fixed parameters A29 ED , and Z/a were selected
and GU determined as a function of Bw and BS for L = 100 mg UF6/sec and
® = 0.4. The Onsager—Cohen solution method described in Sec. C.2., in
conjunction with the condition of no-mixing at the feed injection point, was
employed in solving the diffusion equation.The results are shown in the topo-
graphical plot of Fig. 8§, where the curves represent contours of constant
separative power. The centrifuge performs most efficiently with a mixture of
scoop and wall thermal drive indicated by the peak located at the cross
in the plot. This optimum is larger than can be achieved if the centrifuge

is driven either by the scoop alone or by a wall temperature gradient alone.

The reflux ratio is defined as the magnitude of the circulatory flow
divided by the net flow. The former is equal to the non-feed portion of the
flow function at the location of the change in sign of P W The latter
is the product flow rate in the enricher or the waste flow rate in the stripper.
For the example using Eq (81) which results in the plot of Fig. 8, the reflux
ratio is 12 at the waste end and 2.6 at the product end. At the feed point,

the reflux ratio is 15 on the enricher side and 10 on the stripper side,

The axial concentration distribution for conditions at the peak is shown
in Fig. 9. Most of the enrichment occurs in the upper part of the centrifuge,
for the following reason. The decrease in the flow function towards the top
causes a larger reduction in the integral in the denominator of Eq (74) than
it does in the integral in the numerator. Hence, gD increases near the top
and by Eq (73) the concentration gradient steepens. Figure 9 also shows
that the feed point for no-mixing occurs at an axial location well above the
expected value for axially invariant flows in the close separation limit, for

which N = 0 (Ref. 6).
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The contours in Fig. 8 were computed with the restriction of no-mixing
at the feed injection point. As in the ideal cascade, it is usually assumed
that the highest separative power in a single centrifuge is attained by adhering
to this rule. However, Fig. 10 shows that this criterion for feed injection
need not result in the best machine performance. In the example treated here,
the maximum separative power occurs when the relative feed injection height is
0.51 rather than the no-mixing condition of 0.59. There is a significant penalty

for introducing the feed at an off-optimum axial position.

The peak marked by the cross in Fig 8 reoresents one point on the
performance function of a centrifuge with internal circulation induced by
scoop, feed and wall thermal drives. To illustrate entire performance func-—
tions for various types of internal drives with only a single adjustable
parameter to consider,flow optimization calculations have been performed
separately for scoop plus feed drive and for wall thermal plus feed drive.
The radial shape of the non-feed combonent is given by Eq (61)  and
the axial shape by either Eq (59) or Eq (62) As in the previous example,
the feed is represented by an axially invariant flow function with the
radial shape of Eq (63) | The optimization is performed on the single magni-
tude parameter B for the internal drive considered. Throughputs range from

25 to 100 mg UFé/sec and cuts from 0.2 to 0.8 are considered.

Figure 11 shows the performance function for axially invariant flow
(¢=0 in Eq (59) and with b = 1| in the radial shape profile. The opti-
mized separative power 6U*is relatively insensitive to cut and increases
slightly with throughput. Fig. 12 shows the effeccts of changing the radial
shape and using c = 2/3 in the axial velocity profile of Eq (59)

The performance function for b = % is nearly twice as great as it is
for b = 1. This effect is best understood in terms of the flow pattern

efficiency e introduced by Cohen(l) and defined by Eg. (63) of Ref.23.

In terms of the scale height variable, ©p with no feed is given by

2
N
L2 o Fag (82)
F 2 2
A A de;
1-£/n°
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The flow pattern efficiency is unity when tne flow function is propor-

rional to rz, or F o« 1 - [ /Aze However, using the radial shape given by
Eq (61) in Eq (82) , we find that E is proportional to 1/b, which qualita-
tively agrees with the difference between the performance fUunctions sho&n
in Fig. 12 for b = %’ and b = 1, As a general rule, those radial shapes
which extend furthest into the inner core of the rotor give the best

performance.

The effect of the axial shape of the flow function can be seen by
comparing the performance functions for the axially invariant flow shown
in Fig. 11 with the lower performance function surface in Fig. 12. These
two performance functions differ only in the prescribed axial shape of the
flow function used to compute them, the latter represented by Eq. (59) with
¢ = 2/3 and the former a constant. The axially tapered flow function yields
" 19% higher separative power at a éut of % than is obtainable from the axially

(24)

invariant flow. According to May , this improvement is due to attainment
of an ideality efficlency of neavrly 100%. A centrifuge with nondecaying
internal circulation 1is analogous to a square cascade, for which the

%<23)5 If the flow in the interior of the

maximum ideality efficiency is 81
centrifuge is tapered to resemble that of an ideal cascade rather than that
of a square cascade, the ideality efficiency increases to 100%Z. In order to
prove this proposition for flow functions derived from simple hydrodynamics

of the type F(n,&) = Bh(m)£(€), we rewrite Eq. (73) in the form:

Cx(l —x)H -9 (x - %)
P

dx Z 1
@ =20
dn a D2y CzHZ

(83)

where H () = Bh (M) aﬁd?Cl‘and C, are:

2

A
AM -
SRS R OL

2
A
o - __;t_j” £% ()
20 a2 Jy qegga?
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The terms involving P in these integrals have been neglected because they
are much smaller than F. To determine the optimal axial shape of the
circulation, we require that the axial concentration gradient be a2 maximum

at all concentrations, which yields:

d dx

ai () = O

Substituting Eq. (83) into the above formula gives the optimum value of H

as a solution of the quadratic equation:

9 ZCZP(XP - x)

2 Hopﬁ - Clx(l - %) Hopt

D% - (84)

1f we note that the group C2H2/§)2 is the parameter m2 of the Cohen theory
(Eq. (97) of Ref. 6), the above equation is identical to the condition
derived by Von Halle(zs)n To determine the axial concentration distribution
at these optimum conditions, Eq. (84) must be solved for Hopt as a function
of %, substituted into the right hand side of Eq. (83), and the equation

integrated numerically. Von Hélle(gs) has treated this problem in detail.

Except near the top of the centrifuge, the 5}2 term in Eq. (84) is
negligible; and the optimum axial shape of the internal flow can be

expressed by:

Hopt ==—~2(X) f X)
C}X<]"X) (85)

or the optimum flow magnitude depends on composition in exactly the same
way that it does for the ideal cascade, Eq. (85) shows that the flow
function should be tapered so that it is a maxdimum at the feed point

and decreases towards the top and bottom of the centrifuge (a formula

for Ho similar to Eg. (85) applies to the stripping section). 1If the

pt
feed is introduced into the center of the centrifuge, the axial shape
represented by Eq. (85) is very close to that given by Eq. (59) with

c = 2/3. We have seen that changing the axial shape function from the
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constant represented by the ¢ = 0 in Eq. (59) to ¢ = 2/3 form increases the
performance function by v 19%. If the axial flow shape 1s tapered even

more strongly by using ¢ = 1 in Eq. (59), the performance function decreases
by v 6% from the ¢ = 2/3 surface of Fig. 12. Thus, an optimum axial

shape for the circulatory flow in a gas centrifuge exists, and it is approxi-
mately that given by wall thermal drive for which ¢ = 2/3 in Eq. (59). It
should be recognized that these optimal axial shape analyses are valid only
for flow functions which can be expressed as a product of a function of n

and a function of £.

The existence of well-defined radial and axial flow function shapes for
optimum sepérative performance provides a qualitative explanation for the
location of the peak in the mixed scoop/wall thermal drive case of Fig. 8.
The flow function for wall thermal drive has a nearly ideal axial shape,
but compared to scoop drive, exhibits a radial profile which is too close to
the rotor wall to give high efficiency. The flow function for scoop drive,
on the other hand, has a poorer axial shape but a better radial pattern
than the wall thermal drive flow function. The mixture of two parts of
scoop drive and one part wall thermal drive best exploits the desirable

features of each driving mode.

Figure 13 shows the performance function for a flow whose magnitude
decays axially from the bottom end (typical of scoop drive). Contrary to
the performance functions for axially symmetric flow shapes shown in Figs.
11 and 12, the best performance from bottom end-driven centrifuge is obtained
at low cuts. This phenomenom is of importance in cascade design, and will

be considered in the following section.

The dashed lines for the minimum and maximum throughputs in Figs. 12
and 13 show the effect of the correction factors involving P in the flow
coefficients of Eqs. (74) and (76) (and W in the analogeus coefficients
applicable below the feed point) and of including the feed component in
the total flow function. The dashed curves were computed by setting FF =0
in Eq. (3) and P = 0 in Eqs. (74) and (76) (and by letting W = 0 in the

corresponding stripper coefficients). The results of ignoring feed
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effects in the hydrodynamics and in the flow coefficients g and vy is to
increase the predicted separative power by a few percent. At least from
the idealized hydrodynamic model upon which the performance functions

are based, the improvement over the original Onsager-Cohen model is slight.

The performance functions displayed in Figs, 1l = 13, which were
computed from the idealized hydrodynamics represented by Eqs. (58 - 63).
all show increasing separative performance as the throughput is increased.
Whether this behaviour is an artifact of the particular velocity profiles
utilized is not known. If the feed drive component of the flow function
were properly modeled, the performance function might exhibit an optimum

throughput as well as an optimum cut.

Fig. 12 shows that an optimum cut is predicted from pure wall thermal
drive, while the scoop drive performance function of Fig., 13 increases
monotonically with decreasing cut. The entire performance function for the
dual drive case treated earlier was not computed, although it would likely
turn out to be a blend of the lower performance function in Fig. 12 and the
one in Fig. 13 and exhibit an optimum cut of less than 1/2. A three dimen=-
sional representation of the analytical or experimental procedure needed to
establish the performance function ¢U (L, 0 ) for a centrifuge with
two controllable internal flow pavameters is shown in Fig. 4. The bottom
surface represents the variation of separative power as the two driving mode
strengths are varied for a single cut-throupghput combination (in contour
representation, this shape is depicted in Fig. 8). The peak P' of the lower
surface becomes a single point P on the performance function sketched in
the upper portion of Fig. 14. If the peak-secarch procedure represented by
the lower sketch is repeated for all L-0 combinations, the entire per-
formance function shown in the top of the figure is determined. For a real
centrifuge, this process involves at least six rather than only two inter-
nal flow variables. Soubbaramayer and Billct(26> have studied internal flow

optimization at fixed cut and throughput,

If the performance function posesses botrh an optimum cut and an opti=-
mum throughput, its representation would look very much like that shown in
Fig. 14. The peak in such a performance function would then fix completely

the best set of conditions at which tooperate the centrifuge. Barring mecha-
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nical problems, there is lictle difficulty in operating at the optimum
throughput, However, it will not in general be possible to operate the centri-
fuge as a unit in an ideal cascade at the optimum cut., The no-mixing requirement
of the cascade dictates a definite relation bétweeﬁ cut and separation factor,
and this condition may force operation of the centrifuge in the cascade at

an off-optimum cut.

D. IDEAL CASCADES FOR GAS CENTRIFUGES

D.1 Symmetric

In a conventional cascade, the heads and tails streams from a
particular stage are sent to immediately adjacent stages (Fig. 15a). For

this type of cascade to be ideal, the no-mixing condition

% = X
p,i~1 w, 1+ 1 (86)
must be satisfied. Because the separating units which comprise each stage
are operated in identical fashion, the heads and tails separation factors
are independent of stage, which in the case of low enrichment, is expressed

bv:

PR

0 ® et = constant with 1 (87a)

X
w, 1+1 o .
B = - 2 = constant ‘with i (871)
w, 1
for the tails separation factor. The total separation factor is of . Substi-

tuting Eq (86) into Eq (87a) and comparing the result with Eq . (87b)

results in the symmetry condition

a = B (88)
The U-235 balance on each stage is equivalent to the single centrifuge ba-
lance given by Eq (71). In terms of the heads and tails separation factors

and the cut and the throughput, this equation is

1o=20 4+ (1 -0y /8B (89)
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Taking Eq (88) into account, Eq (89) fixes a relationship between the

separation factors and the cut

0= B = 120 (90a)

or
0 - 1 1 (90h)

o o+ ] B«H

Thus, the larger the separation factor of the units, the lower the cut
required for their operation in an ideal cascade. This condition in effect
eliminates the cut as an independent variable if the units are to be

operated in an ideal cascade. Instead of expressing the cut requirement in
terms of the separation factors, it is more useful to work with the equiva-
lent condition in terms of the separative power. Tor low enrichment, the value

function of Eq (79) is approximately -Inx, and Eq (78) becomes
Sy = 21.2 L[ - 8na + (1 - 6)2aB] (91)

For the symmetric ideal cascade, @ and B can be eliminated from this

equation by Eq (90a) yielding :
1 -0
5U=21.2L(1»2@)!n(~—»—@»—o—) (92)

This formula defines a surface of S8U in (L, Q ) space. This surface
intersects the performance function 5U%(L9 6 ) along a space curve

which is the locus of allowable operating points L and © for the internally
optimized separating units. If the throughput is selected, both the cut

and the separating power are determined. One would want to

select operating conditions along this space curve which produce the largest
separgtive powgr,fpr the following reason. To a good approximation, the cost
" of éléentrifugé éﬁfichment plant is proportional to the number of centrifuges
in it. TFor a specified cascade separative capacity ‘AU, the number of

centrifuges needed is AU/SU, which is minimized by making 6U as large as

possible.

Uranium enrichment by the gaseous diffusion method posesses two

features which render it suitable for use In a symmetric cascade. First
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the separation factor is very close to unity, so that the cascade cut requi-
red by Eq (90b) is very close to %-9 Second, the separative power of the
gaseous diffusion barrier is relatively insensitive to cut., ¥With centrifu=
ges as separating units, however, neither of these conditions apply ; the
separation factors are considerably larger than unity, and the separative
power is’émétrong function of cut. As a result, other types of cascades
(still ideal, or no-mixing) can provide more separative power than a

symmetric cascade with the same number of centrifuges.

D.2. Asymmetric

Asymmetric cascades are designed to exploit the particular features
of the cut-dependence of the separative power of gas centrifuges. The
. most important of these are bypass cascades, in which the heads and/or
talls streams are dellvered to units which are two or more stages away
rather than to unilts in adjacent stages. The simplest variant of this
type of asymmetry is the two-up, one-down cascade shown in Fig. 15b(4)°

The no-mixing condition for this type of ideal cascade is:

x . X . 93
py, i=1 = Tw, i+2 o3
and the heads and tails separation factors are
% , X . X
p, 1+! n, i+1 i , .
n = t = L D = constant with i
X . X, X .
Ps i-1 Pyl Ps 1=l
(94a)
and
Xw 1+]
8 - s - . )
" constant with i (94b)

Using Eq (93) in Eq (94a) and taking Eq (94b) into account yields

2
o =R (95)

which is the asymmetry condition for the two-up, one-down ideal cascade

The cut-separation factor relationship for this cascade is obtained by using

Eq (95)  in the U~235 material balance given by Eq (89) , which results in
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B -1 1
CB87=1 32+e+1

Replacing o in Eq (91) by 82 and expressing R in terms of 0 by Eq (96)

yields the cascade condition in terms of the separative power

-0 1
5 7 97)

6U=21°2L(1-36)1n/2{f +

The advantage of a bypass cascade is illustrated for the scoop-
driven centrifuge represented by the performance function in Fig. 13, where
Eqs (92) and (97) ‘ are plotted for L = 100 mg UF6/seC, The intersections
of these lines with the upper solid curve of the performance function fix
the cuts at which this type of centrifuge must be operated in the two types
of ideal cascades. In the symmetric cascade, the required cut is 0.452 and
the separative power is 38.5 SWU/Yr. In the two-up, one-down cascade,
the centrifuge must be operated at a cut of 0.287 but the separative power
is 42.2 SWU/Yr. This 107 improvement in performance is well worth the slightly
more complex cascade piping required in the symmetric modification. Moreover,
the two-up, one-down cascade provides two enriched streams, which may be
desirable in blending products to customer specifications without incurring

excessive separative work losses.,
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Appendix A - Onsager's Master Equation(g)

The starting point for deriving Onsager's equation is the set of
linearized conservation equations, which are given by Eqs. (7a) - (7f)
of the text. Dropping all terms In these equations which involve axial
diffusion of heat and momentum as well as the term representing radial
diffusion of radial momentum yields the following set of partial differential

equations for the six perturbation variables u, v, w, p, p,and T.

13 ) ;
§-8:(peqru) + az(pqu) = 0 (mass) {(A-1)
- 7 ., A=-2)
5r0? - 20 Qv+ 9p _ 0 (radial momentum) (
eq o
I I I - (azimuthal momentum) (A-3)
2pqu§ =M r [r ar (rv{)
ié.g I 1 ﬁm.r w (axial momentum) (A=4)
9z ar Jr .
T ¥ (A-5
- 2%ru = x L g—--r or (energy) )
r ar\ or
- M - T .
U PO - 2 leal gas Iaw (A-6)
P (RTO} P peq(,ro) (ideal g )

In these equations, i and K are the gas v iscosity and thermal conducti-

vity, respectively.
First, use of Egs. (4) and (5) of the text yields:

2

2 |p
Deq or

peq

- aé.w Me2r| -
= 5= ( RT@) P (A-7)

Then ? is eliminated from Eq (A-2) by use of Eq(A-6) and the resulting

equation is combined with Eq (A-7) to yield
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é, iﬁ, gﬂ% = 0 v ck%}}} (A-8)
r 3dr Deq r o

Taking the derivative of Eq{A-8)with respect to 2 and eliminating.

ap/ @z Dby Bq.(A-4). results in :

ot Tav ofEV] a1 1 [ o =9
3z r T =M r 3y o r odr dxr

eq
A mass flow stream function satisfying Fg.(A-1) is defined by :

_ _ 3y
o™ T 7 bz (A-10)
) 3@ (A-11)
r peqw = Ny

The definition of the stream function is completed by the specification

V (a, 2) = 0, which yields

Vo= - @ wr' dr' (A-12)

A new quantity ji , called the Master potential, is defined by :

1

Y o= Y3y (Awl3).

In terms of 3§ , the radial and axial mass flows are

X

rf u= - (A-14)
e rordz
and
rY 1 X ik
€7 37 (757 (A-15)
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Taking

% é%; of Eq.{A-9) and using Eq.(A-15) vyields
1 2 <
ot ¥ w_ o O 1R 3 K
r )0z L To (r?r)z eeq ror or €eq (rbr)z
(A~16)
where :
‘b&
— = L .}.@ (_]_ ?;> (A-17)
(rﬂar)Z r DT r Rt

The left hand side of Eq.(A-16) can be expressed in terms of axial deriva-

tives of the Master potential by the following arguments.

The first term on the left hand side of Eq.(A-16) is :

32(v/x) | 50 3 |1 3v/x)
2% sz 20 57 1% Tar (A-18)

Using the identity :

2 [apom]| _afro
or {r dr ] dr [r 5r<r.V)

the azimuthal momentum equation, Eq.(A=3),can be written as

1 3 3 3(v/r)
205 =V G | T oy (A-19)

qiw

Multipliying Eq. (A-14)by 2 Q/r and combining with Eq.(A-19) gives

1 3(v/r) _ _29 9 )
r 3rx prt 9z (4-20)
The second term on the left hand side of Eq.(A-16)is
2 (7 A(T/T )
_Qz a_,,(_T/n.,_T__..o) = - 'Q;' 9’““ T M”“/ o (A"'21>
roxdz re 9z dr
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The energy equation, Eg. (A-5),is;

T AT/
o Qru=-—2 L |y T o

eq P . (A-22)
Multiplying Eq.(A-14)by S22 and combining with Rq.(A~22)gives
) DA/T) g2y
9xr kT, 9z (A-23)

Substituting Eq.(A-20)into(A-18) and Eq.(A-23)into (A~21)ermits the left
hand side of Eq.(A~16)to be expressed in terms of the axial second deriva-

tives of the Master potential. Eq.A-16) becomes

32 J1 1 » 5 |1 32 1 140" ot 192
S N PR - T - L X = A-24
(rar)? \p r 2r [} 3r peq (rdr) * u T+ TO AR 0 ( ~ )

eq

when expressed in dimensionless terms, this is Eq. (9) of the text:
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Appendix B - Radial End Mode Solutions

(9

Following Onsager , a4 new radial coordinate is defined by:

c= E - fm A (3-1)

which transforms Eq. (29) of the text to:

2 2 2.1 .
) _%{ SN (5-2)
dt dt dt

Being of sixth order, this equation requires six boundary conditions.
These are similar to those given in Sect.B.3., cxcept that feed and wall
thermal drive effects are neglected ; these have been accounted for in
the zero eigenvalue solution, At & = 0 (or t = - gn A ), the boundary

conditions for Eq- (B-2) are:

R LSfE 0 att=-PmA (B-3)

"where the subscripts t and tt denote the first and second derivatives,
respectively, and L is the operator defined by Eq.(21) (with ¢ replaced
by t).

Because the radial components of the end modes decrease rapidly

with increasing distance from the wall, the boundary conditions at the

inner edge of the Stewartson layer are

BB ao at t = Q0 (B~4)

Here L3 is the third order differential operator used on the left

and side of Eq (26) of the text, with & replaced by t.
Onsager solved Eq(B“2> using the method of Frobenius. He showed

that only three of the six solutions satisfy Eq (B-4) The remaining

solutions, which we denote by fA(t), fB(t) and EF(E)’ are infinite series
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containing terms which decay exponentially in t. These solutions
(10)

are given in the paper by Wood and Morton , so we do not reproduce

them here . The solution of Eq (Br2) can thercfore be written as

£ (t) =X £, ( t)+§fB (t) + ¥, (O ’ (B-5)

where &, ? and § are constants of integration. The boundary conditions
at the rotor wall (t =-0n )\ ) are satisfied by substituting Eq (B~5) into
Eq (B-3) which yields :

offy, * P * § fee =0
(B-6)
O£y * ?tht *¥feee = O
o Lf, * % Lefy b Lf. = 0

where the subscripts t and tt and the L5 operator have the same meanings
as in Eq (B-3). Being homogeneous, these three linear equations’yield
nonzero values of the coefficients ¢ , B and 7Y only for distinct

values of X . Both the coefficients o, B and v and the eigenvalues A are
obtained by setting the determinant of the matrix formed by the f-func-
tions and their derivatives in Eq(B-6) cqual to zero. The roots of this
determinant equation are the end mode cigenvalues, denoted by A A (n =1,
2, 3..... ). Because the equation is homogeneous, the values of o, B and vy
which correspond to each eigenvalue are determined only to within an
arbitrary multiplicative constant. Accordingly, o can be set equal

to unity and the mapgnitude of the end mode contribution to the Master
potential remains to be fixed by coupling the Stewartson layer solution

to the Ekman layer solution.

Thus, corresponding to each eigenvalue A N there corresponds
an eigenfunction fi (£ ) formed by replacing t in the functions on
the right hand side of Eq(B-5) by & ~ In X, setting (arbitrarily)
o = 1, and using the ratios 8/ o and v / acalculated from the solution

of the determinant equation derived from Eq (B=6) for the A n considered.
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The first 10 eigenvalues and eigenfunctions for the end modes have been

determined in this manner by Morton(16)e Wood and Morton(lo) present an

asymptotic method of calculating the eigenfunctions and eigenvalues for

large n.
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Appendix C - The Carxrier-Maslen Analysis of the Ekman Layer<lo’17)

Because the gradients of velocity in the Ekman layers are prima-
rily in the z-direction, we neglect all radial derivatives in the linea~
rized equations of motion [Eqs (7 b) - (7 e) of the text] are neglected

which leaves:

- 2 d” u
- @ rfL ngeqj’l v=p 5 (C-1)
dz
' dzv
2 ?eqﬂ u = %é’ ”(;—':,2 (C-2)
Z
dp a2
dz dz
2 a°T

-p 7 orus K — (C=4)

eq dz
Taking d/dz of Eq. (7f) of the text and replacing dp/dz

appearing therein with Eq. (C-3) yields:
€ ( Zﬁ%) dw _ Veq dI
dz RT 2 T (C-5)
dz o dz
Now take d/dz of Eq (C-1) and eliminate dp /dz by Eq. (C-5):
160 0 1 @ 2
_cleqdba | rflor | du (M yen?y & (C-6)
? dz 2 T 3 RT 2
0 dz 0 dz

Introduce a nondimensional velocity stream function satisfying

Eq (7a) of the text:

(c=7
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2 92

- 3
TP ¥ = - 0 a 5T (:pqu) = -0 a

. ,
F (peq‘l’) (C-8)

The pancake approximation ¥ = a has been used. Substituting Eqs. (C-7)

and (C-8) into Eq. (C-6), dropping r-derivatives and retaining only the
highest order derivative of Y with respect to z yields:

20 - ]
RAT N L T .oy (c-9)
? aZ 2 o dz

The bracketed term in this equation is exnressed as a function
of ¥ by dividing Eq (C-2)by pu and subtracting Eq(C-4) (which has been
multiplied by r Q /2kT) followed by eliminating u by use of Tq (C-7):

2 2 2
EE_.[} - iéz' i ] = ?L{E;fiﬁgifﬂ.(] - rzfl F )
dz? 2 T lu, 5T

The term in parentheses on the right is related to S of Eq (14) of the text.

d 1{}"
-1
= (C~10)

For r/a = 1 (the pancake approximation):
24 2
A LN L Vs (C-11)
4KTO

and the bracketed term on the left of Rq. (C-10) can be expressed in terms of
¢ of Eq. (20) of the text:

v - LELE > - l* afL ¢ (C-12)
2 T -
(e}
In terms of ¢, Egqs (C-9) and (C-10) can be written as:
i _E
d éqj - £ 3 éi = Q (C-13)
dez £ a (iZ
and g
- 2
W
&:4 Se‘ ‘ j . 47 (C-14)
ag z 2
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where € is the Ekman number [Eq. (8) of the text] and peq has been expressed
in terms of the radial scale height variable by Eq. (11). Integration of
Eq. (C-14) once (and setting the integration constant equal to zero) and

use of this result to eliminate d¢/dz from Eq. (C-13) gives:

4 -
d ;U R (C-15)
dy
where
S!/éb e"‘ §(é
v o= 2 (C-16)

aE

is a new axial position variable scaled to the thickness of the Ekman layer.
Neglecting solutions which grow exponentially in y, the general solution of

Eq. (C-15) is?

sin vy) {(C-17)

o0

-y
¥ - ¥ = ¢ (Cicos y o+ C2

Since S is of order unity, these equations show that the thickness of the
Ekman layer (i.e. y = 3) is ~ 3v/e a. In Eq. (C-17), Y is the value of
the Ekman layer stream function far from the end cap; this gquantity must
be equated to the value obtained from the Master equation describing

the flow in the Stewartson layer. Finally, ¢ can be determined by a
second integration of Eq. (C-14):

2 g3/ -§l2 N
¢ -0 = . < e - C!(cos y=sin y)+C2(cosy+siny)

@@ Ve

(C~18)

where the integration constant ¢_ is fixed by the angular velocity and
temperature perturbations in the Stewartson layer where it joins the
Ekman layer.

Conditions imposed on the bottom end cap determine ¢ at y = 0 and serve
to determine C1 and C, in Eq. (C-17). If drag of the scoop on the gas at the
bottom of the centrifuge is simulated by a bottom end cap which is rotating
less rapidly than the rotor wall, the angular velocity perturbation v is nonzero
at this horizontal surface. 1In addition, end-cap thermal drive is represented

by a nonzero temperature perturbation T at the same location. Because these
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two parameters appear together in Eq. (C-12), we let @B denote the specified
value of ¢ at y = 0 and Eq. (C-18) becomes:
= §[2

3/4
¢ -0 LS € G+ C.)

B 09 rigv ! 2 (C-19)

Similarly, if YB denotes the stream function on the bottom end cap Eq. (C-17)

yields the condition:

Y, =¥ =C (C-20)

Finally, the radial velocity u vanishes along the bottom end cap. From
Eq. (C-7), this condition is equivalent to (BW/By)yzo = 0, and, from
Eq. (C-17):

c, = C2 (C-21)

Eliminating C, and C, between Egs. (C-19) - (C-21) yields Eq. (44) of the

1
text.
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Appendix D - The Onsager-Cohen Method of Solving the Diffusion Convection

Equation in a Gas Centrifuge

The Onsager-Cohen integral method for solving the diffusion-convection
equation is presented for the enriching section of the centrifuge. The analogous

equation for the stripping section follows by replacement of Xp by X, and P by-W.

Integrating the last term of Eq (72) by parts and introducing the flow

function of Eq ( 2) yields
ra a

{%p~x(aﬂ P = «27{pD) } r g%) dr - F (5;) dr (b-1)
0

© ® ®)

The concentration x and the flow function F both depend upon axial position,

but this variable has been omitted to keep the notation simple. We consider sepa-

rately the three terms in Eq (D-1).

zyegAQTerm

We first multiply Eq (65) by 27 r'dr', inteprate from r,tor and solve
for 9x/ 9r, utilizing the radial boundary condition of Eq (66) in the process.

Substituting 9%/ d3r into the last term of Eq (D-1) yields

ra ra (r .
3 . r
} %(1-x)Frdr + F {2ﬂ peqwxr dr} -
0 0 C

21pD oz

Ave®

RT
o]

(D-2).

where axial derivatives have been moved through r-inteprations because the varia-—
tion of F and peq w with 2z are assumed to be of minor significance in this step.
Similarly, the inner boundary of the Stewartson layer r has been set equal to

zero since the flow function is very small for r < Ty
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Concentrations can be extracted from the integrals in Eq (D-2) by defining

suitability weighted averages. Defining a flow function weighted average concen-

tration X, by

a
— ( ¥ (1-x)Frdr
- 0
Xj(l - x7) = fa ‘ (D-3)
o Frdr

permits the first term to be written as

o (1-x, ’
T x7 -x?) Frdr (D=4)
o) 0
Similarly, for the second term, the following average concentration
(a [ ¥
dr
F |2 R
= Jo i (o Peg ™™ dr] r
2 Ja F2 dr {D~5)
0
yields
== a
_ 1 =, P2 ar (D-6)
2TpD  dz r

is nearly, but not quite, the flow function squared weighted concentration.

*9
The A3 term can be written as
2 = a
d  x
- 1 3 2 dr
= - e ¥ -
Q-Q 2 g,? ' r =7
z 0
where §3 is the unweighted average
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2 (D-8)
¥ m et xrdr :

The @tem in Eq. (P=2) is smaller than the other two, and was disreparded
completely in the original Cohen treatment<6) . However, it can be retained
without greatly complicating the analysis. Although Eq (D-7) calls for the
unweighted average in the axial second derivative, 3{'2 can be used as an

approximation. To eliminate the sccond derivative in Eq (D=7) | we take
the derivative of Eq (72) and extract xas %_2

ym

d x 9 ) . d 2 dx2

— TT oeqwr r . P (D-9)
dz 0

i}

m az(o D)

Replacing dz ?B/dzz in Eq (D=7) by'dz ‘;:2/(122 and using Eq (D-9) yields :
d‘}'{z a
1 r.2 dr
- dz TP (D-10)
27p D 0
Adding Eqs (D=4) , (D-6) and (D-10) gives
~ a dXZ /dz a r2 "
%, (1-x,) Frdr + —————— F(F-P —5) —
i 1 2 ﬂQD a r
0 0
(D-11)
dx
2 3 (D-12)
®= ra® (D)

The Q:Zt:erm

Since we are aiming for an axial enrichment equation involving some

radially averaged concentration, the wall concentration x{(a) in the @
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term of Eq (D-1) must be expressed in terms of a radially-averagedvalue of
% . To do this, we first need an expression for the radial concentration

gradient. Comparison of the

(&) term given by Eq (P-11) and its original
definition in Eq (D-1) shows that

5 x AMQ2 _ _ dxz/dz F_Prz/a2
ST ST T X (lmxl)r + (D-13)
RT ! 2mp D r

This equation differs from the approximate gradient equation in the
earlier Cohen analysis [Eq (48) of Ref. 6 |in the Przfaz term on the right
hand side. Since the flow function defined by Eq (2)‘reduces to the product
flow rate P ar r = a, this additional term is required to insure that the

correct boundary condition Eﬁq (66);]is met at the rotor wall.

When integrated from r = v to r = a, Eq (D-13) yields

2 2 2
- AMO & @ — . — _r
x = x(a) + =~3§§;-»- Xl(] x})(i ;f)

We now must choose (arbitrarily) a method of radially averaging
the concentration. Any of the three radial averages introduced in the
treatment of theandterms could conceivably be used. However, if a
choice 1s available, it is preferable to select an average which, at the
two ends of the centrifuge, most nearly represents the product and
waste compositions. Because the thickness of the Stewartson layer is compa-
rable to the size of sampling port in the tep baffle through which the
product is removeé, it is unlikely that xp represents the local concentra-
tion at the average radial location of the sampling port. Similarly, neither
does the scoop at the bottom of the rotor remove gas of a concentration
characteristic of a precise radial position. The most reasonable agsumption
is that the gas removed from the ends of the centrifupe are mass—weighted
averages of the radial concentration distributions at the top and the
bottom of the Stewartson layer. The matural weighting is based upon the
stratification of the gas by the centrifugal force, that is, by the equi-
librium radial density distribution of Eq (11). The density-weighted radial

average concentration is defined by
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a
—_ Jéﬁ exp Z“ A* (1”r2/32)7 xrdr
4 a - (D-15)
g/f) exp E° A2 (lwrz/az)j rdr
0

Substituting x from Eq (D-14) into the integral in Eq (D-15) and
assuming A2 é} 1 leads to the following equation for the(@)term in Eq (D-1)

dx, /dz a
7 - AM,| — - 2 2 r? 2 4q
(¢)= P(xp«xé) + ( =) X, (lmxl)P e - exni;-A (1~ wf)(F“P ) =L
I M 270D [0 a a2 T
(D-16)
Axial enrichment gradient equations :

When the and@ terms given above are substituted into Eq (D-1)
there results

) d§ dx ,/dz
Ta (on) {F -P exp ~—/\ (i~r /a 2} E~ (r )J
dz 21TpD
2 a
= A%I.fz_ §1(1*§1)-/ {F—Pexn E-—Az(l-’rz/az)} rdr - P(XP";£’>
0O

(D=17)

This axial gradient equation contains four radially averaged concentrations,
only one of which (%@) is arbitrarily chosen. To be usuable, a final appro-

ximation must be made, namely :

‘ D-18
y 2%, ( )

That is, the distinction between the four averaging methods 1s disregarded

in the Onsager—- Cohen method. Three of the average concentrations in Eq
%)
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(D-18) are strongly influenced by the radial stratification of the gas

and ave not too different from each other. The unweipghted average, §3
however, is significantly larger than the other three. Fortunately, the
terms in which is enters are of minor importance in the overall separation

process,

Replacing all radially averaged concentrations by a single quantity x
and expressing radial and axial positions in terms of the scale height
[Eq(lO)J and the dimensionless axial location £Eq,12 g, Eq (D-17)
reduces to Eq (73).
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FIGURE CAPTIONS

An early gas centrifuge (courtesy U.S. Departent of Energy).

Interior details of a pas centrifuge.
Rotor wall and end cap temperatures for thermal drive of a centrifuge,

The first four end-mode eigenfunctions and their associated eigenvalues
(from Ref. 10).

Matching of the Ekman and Stewartson layer solutions at the bottom end cap.

Radial shape of the countercurrent in a centrifuge with no scoop-and no
. -3 .

feed and a wall temperature gradient of -3x10 ~ K/cm. rotor radius =

9.15 cm ; rotor length = 335 cm ; mean gas temperature = 300 K ; pas

pressure at wall = 100 Torr (after Ref. 10).

The countercurrent in a scoop-driven centrifuge ; the centrifuge proper-
ties are the same as in Fig. 6 except that the rotor wall temperature

is uniform ; scoop drive characterized by a disk with the same radius

as the rotor but rotating 0.8 %7 slower than the latter.(Courtesy J. Billet

CEA %, calculation performed by the CENTAURE code(lg),

Contour plot for internal flow optimization of a centrifuge with scoop

and wall thermal drives.

Axial concentration distribution for a centrifupe with optimized scoop

and wall thermal drives.
¢
Effect of feed injection point on separative power.

Performance function for a centrifuge with axially invariant circulation.
Moving upwards, the curves represent throughputs of 25, 50, 75 and

100 mg UF6/sec¢

Performance function for a centrifupe driven by a constant wall tempera-
ture pradient for two radial velocity shapes. Moving upwards, the curves

represent throughputs of 25, 50, 75 and 100 mg UF6/scca

Performance function of a scoop -driven centrifuge for two axial flow
decay lenpgths. Moving upwards, the curves represent throughputs of

25, 50, 75 and 100 myp UF6/sec. The neﬁriy vertical linecs represent cascade
ideality conditions for asymmetric and symmetric cascades with throuphputs

of 100 mg UF6/sec per centrifuge.
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14,

15,

°

Construction of a centrifuge performance function. Bottom : optimization
with respect to internal flow for a particular combination of cut and
throughput ; top : the complete performance function.

Interstage flow connections for symmetric and asymmetric cascades.
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